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How to measure in�nite objects in algebra?

The most natural method to compare �nite sets is to use the
number of their elements, i.e., the cardinality of the sets.

Very often this method does not work when we compare in�nite
sets.
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Vector spaces

When we measure vector spaces we use their dimension:

2 = dim(R2) < dim(R3) = 3.

Again, comparing the dimensions may be not successful for vector
spaces of in�nite dimension.
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What to do with in�nite dimensional vector spaces?

Why polynomials in three variables are more
than the polynomials in two variables?
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First approach

Let K be an arbitrary �eld and let K [Xd ] = K [x1, . . . , xd ] be the
algebra of polynomials in d variables. We shall measure the algebra
using the dimensions of the vector spaces of the polynomials of
degree ≤ n, n = 0, 1, 2, . . .:

g(K [Xd ], n) =

(
n + d

d

)
=

(n + d)(n + d − 1) · · · (n + 1)

d!

=
nd

d!
+O(nd−1).

The function
g = gV : N0 → N0

is called the growth function of the algebra K [Xd ] with respect to
the generating vector space V = KXd with basis
Xd = {x1, . . . , xd}.
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Disadvantage

The growth function depends on the system of generators. The
algebra K [Xd ] is generated also by the monomials of �rst and
second degree, i.e., by the vector space W = V + V 2. Then

gW (K [Xd ], n) =

(
2n + d

d

)
=

2dnd

d!
+O(nd−1).

What is common between both generating functions?

lim
n→∞

logn(gV (K [Xd ], n)) = lim
n→∞

logn(gW (K [Xd ], n)) = d .
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Gelfand-Kirillov dimension

Let R be an algebra generated by the �nite dimensional vector
space V with basis {r1, . . . , rd} and let

Vn = V 0 + V 1 + · · ·+ V n = span{ri1 · · · rim | 0 ≤ m ≤ n}.

Then the growth function of R with respect to V is

gV (R, n) = dim(Vn), n = 0, 1, 2, . . . ,

and the Gelfand-Kirillov dimension is the upper limit (if it exists)

GKdim(R) = lim sup
n→∞

logn(gV (R, n)).
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Properties

I R � commutative ⇒ GKdim(R) is an integer equal to the
transcendence degree of the algebra R (classics).

I R �associative ⇒ GKdim(R) ∈ {0, 1} ∪ [2,∞] and every of
these reals is realized as a Gelfand-Kirillov dimension:
GKdim(R) 6∈ (1, 2) � Bergman Gap Theorem
GKdim(R) ∈ [2,∞) is realized:
W. Borho, H. Kraft, Über die Gelfand-Kirillov Dimension,
Math. Ann. 220 (1976), 1-24.
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Graded algebras

The polynomial algebra K [Xd ] is graded, i.e., every polynomial is a
sum of homogeneous polynomials.
The vector space W is graded if it is a direct sum of the form

W = W (0) ⊕W (1) ⊕W (2) ⊕ · · · .

When the homogeneous components W (n), n = 0, 1, 2, . . ., are
�nite dimensional, the information for their dimensions is encoded
in the formal power series

H(W , z) =
∑
n≥0

dim(W (n))zn,

called the Hilbert series (or Poincaré series) of W .
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The algebra R is graded if

R = R(0) ⊕ R(1) ⊕ R(2) ⊕ · · · ,

and
R(m)R(n) ⊆ R(m+n), m, n ≥ 0.

Usually we assume that R(0) = K or R(0) = 0 .
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Properties of the Hilbert series of commutative algebras

Let R be a �nitely generated graded commutative algebra. Then:

I The Hilbert series H(R, z) is a rational function with
denominator which is a product of binomials 1− zm

(Theorem of Hilbert-Serre).

I If

H(R, z) = p(z)
∏ 1

(1− zmi )ai
, ai ≥ 1, p(z) ∈ Q[z ],

then the Gelfand-Kirillov dimension GKdim(R) is equal to the
multiplicity of 1 as a pole of H(R, z):

If p(1) 6= 0, then GKdim(R) =
∑

ai .
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Hilbert series of associative (noncommutative) algebras

R = K 〈Xd〉 � free associative algebra of rank d (the algebra of
polynomials in d noncommutative variables)

H(K 〈Xd〉, z) =
1

1− dz
(rational function);

g(K 〈Xd〉, n) = 1 + d + d2 + · · ·+ dn =
1− dn+1

1− d

(the growth function grows exponentially).
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Problem

What can we say about the Hilbert series of a �nitely generated
graded associative algebra?

Possibilities:
I Rational function;

I Algebraic function (examples??);

I Transcendental function (examples??).
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Rational Hilbert series

It is easy to construct �nitely generated graded associative algebras
with rational Hilbert series.

Theorem of Govorov

Finitely presented monomial algebras have rational Hilbert series.
V.E. Govorov, Graded algebras, Mat. Zametki 12 (1972) 197-204
(Russian), translation in Math. Notes 12(1972) (1973) 552-556.
(Finitely presented monomial algebras are factor algebras of the
free associative algebra modulo an ideal generated by a �nite
number of monomials.)
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Approach of Ufnarovskii

Ufnarovskii associates a graph to the set of monomials de�ning the
monomial algebra and estimates the growth function in the
language of graph theory.
V.A. Ufnarovskii, Criterion for the growth of graphs and algebras
given by words, Mat. Zametki 31 (1982), 465-472 (Russian),
translation in Math. Notes 31 (1982), 238-241.
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Further generalizations

Recently there are applications to monomial algebras of the theory
of regular languages and the theory of �nite-state automata which
give new results and new proofs of old results providing algebras
with rational Hilbert series.
R. La Scala, Monomial right ideals and the Hilbert series of
noncommutative modules, J. Symb. Comput. 80 (2017), Part 2,
403-415.
R. La Scala, S.K. Tiwari, Multigraded Hilbert series of
noncommutative modules, J. Algebra 516 (2018), 514-544.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



Growth of coe�cients

What is the possible growth of the coe�cients of the Hilbert series?

I Polynomial or exponential growth;

I Can the coe�cients have intermediate growth (can they grow
faster than polynomially and slower than exponentially)?

It is known that the coe�cients of algebraic functions grow
polynomially or exponentially. Hence the intermediate growth
implies that the Hilbert series is transcendental.
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Algebras with intermediate growth � the example of Martha
Smith

There exists a two-generated in�nite dimensional graded Lie algebra
L with Hilbert series

H(L, z) = z +
z

1− z
.

The Hilbert series of its universal enveloping algebra U(L) is with
intermediate growth of the coe�cients:

H(U(L), z) =
1

1− z

∏
n≥1

1
1− zn

.

M. K. Smith, Universal enveloping algebras with subexponential but
not polynomially bounded growth, Proc. Amer. Math. Soc. 60
(1976), No. 1, 22�24.
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Further results

Lichtman generalizes the result of Martha Smith for di�erent
classes of Lie algebras.
A. I. Lichtman, Growth in enveloping algebras, Israel J. Math. 47
(1984), No. 4, 296�304.

Detailed scale to measure the growth

Petrogradsky develops the theory of functions with intermediate
growth of the coe�cients which are realized as Hilbert series in the
known examples of algebras with intermediate growth.
V. M. Petrogradsky, Intermediate growth in Lie algebras and their
enveloping algebras, J. Algebra 179 (1996), No. 2, 459�482.
V. M. Petrogradsky, Growth of �nitely generated polynilpotent Lie
algebras and groups, generalized partitions, and functions analytic
in the unit circle, Internat. J. Algebra Comput. 9 (1999), No. 2,
179�212.
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Finitely presented algebras of intermediate growth

Every d-generated associative algebra R is a homomorphic image of
the free associative algebra K 〈Xd〉, i.e., there exists an ideal I of
K 〈Xd〉 such that R is a factor algebra of K 〈Xd〉 modulo the ideal:

R ∼= K 〈Xd〉/I .

The algebra is �nitely presented if the ideal I is �nitely generated.

The algebras in the examples of Martha Smith, Lichtman, and
Petrogradsky are not �nitely presented.
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The example of Ufnarovskii

V. A. Ufnarovskii, Poincaré series of graded algebras (Russian),
Mat. Zametki 27 (1980), No. 1, 21�32. Translation. Math. Notes
27 (1980), No. 1, 12-18.
Let W1 = Der(K [x ]) be the Lie algebra of the derivations of the
polynomial algebra in one variable over a �eld K of characteristic 0.
This algebra has a graded basis{

δp−1 = xp
d

dx
| p ≥ 0

}
, deg

(
xp

d

dx

)
= p − 1,

and a multiplication

[δp−1, δq−1] = δp−1δq−1 − δq−1δp−1 =

[
xp

d

dx
, xq

d

dx

]

= (q − p)xp+q−1 d

dx
= (q − p)δp+q−2.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



Let L be the Lie subalgebra of W1 generated by δ1 and δ2. It has a
basis

{δp | p = 1, 2, . . .},

and the derivations δp may be de�ned inductively by

δp+1 =
1

p − 1
[δ1, δp], p = 2, 3, . . . .

It has turned out that in this notation the algebra L has de�ning
relations

[δ2, δ3] = δ5 and [δ2, δ5] = 3δ7.
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The universal enveloping algebra U(L) of L is an associative algebra
with basis

{f n1
1
· · · f npp | ni ≥ 0},

generated by f1 = x and f2 = y , where

fp+1 =
1

p − 1
(f1fp − fpf1), p = 2, 3, . . . .

The algebra U(L) is a factor algebra of the free algebra K 〈x , y〉
modulo the ideal generated by

(f2f3 − f3f2)− f5 and (f2f5 − f5f2)− 3f7.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



If we assume that deg fp = p, then the Hilbert series of U(L) is

H(U(L), z) =
∏
n≥1

1
1− zn

=
∑
n≥0
Pnzn.

The positive integer Pn is equal to the number of partitions of the
integer n

λ = (λ1, . . . , λm), λ1 + · · ·+ λm = n, λ1 ≥ · · · ≥ λm ≥ 0.
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By the classical formula of Hardy-Ramanudjan in 1918 (established
independently by Uspensky in 1920)

Pn ≈
1

4n
√
3

exp

(
π

√
2
3
n

)

and Pn is of intermediate growth.
G. H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory
analysis, Proc. Lond. Math. Soc. (2) 17 (1918), 75-115.
J. V. Uspensky, Asymptotic formulae for numerical functions which
occur in the theory of partitions (Russian), Bull. Acad. Sci. URSS
14 (1920), 199-218.
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Examples of algebraic Hilbert series

Let R1 be the subalgebra of the free associative algebra K 〈X2〉
consisting of the polynomials f (x1, x2) with the property

f (x1, x1 + x2) = f (x1, x2),

and let R2 be the subalgebra of R1 of all f (x1, x2) such that

f (x1 + x2, x2) = f (x1, x2).
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Then:

H(R2, z) =
1−
√
1− 4z2

2z2
.

G. Almkvist, W. Dicks, E. Formanek, Hilbert series of �xed free
algebras and noncommutative classical invariant theory, J. Algebra
93 (1985), 189-214.

H(R1, z) =
1−
√
1− 4z2

z(2z − 1 +
√
1− 4z2)

.

V. Drensky, C.K. Gupta, Constants of Weitzenböck derivations and
invariants of unipotent transformations acting on relatively free
algebras, J. Algebra 292 (2005), 393-428.
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Relation with noncommutative invariant theory

The algebra R2 is an algebra of invariants:
R2 = K 〈X2〉SL2(K) is the algebra of invariants in K 〈X2〉 of the
special linear group SL2(K ), acting canonically on the
two-dimensional vector space KX2.
The algebra R1 is also an algebra of invariants: R1 = K 〈X2〉UT2(K),
where

UT2(K ) =

{(
1 α
0 1

)
| α ∈ K

}
.
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Remark

The algebras R1 and R2 are not �nitely generated but they are free
associative algebras.
D.R. Lane, Free Algebras of Rank Two and Their Automorphisms,
Ph.D. Thesis, Bedford College, London, 1976.
V.K. Kharchenko, Algebras of invariants of free algebras (Russian),
Algebra Logika 17 (1978), 478-487. Translation. Algebra Logic 17
(1978), 316-321.
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Generating sets of the algebras R1 and R2

The algebra R2 has a generating set which is built inductively.
(1) We start with [x1, x2] = x1x2 − x2x1.
(2) If w1, . . . ,wm are already constructed elements of the
generating set (allowing repetitions among these elements), we add
to the system of generators the element

x1w1 · · ·wmx2 − x2w1 · · ·wmx1

and continue further.
The algebra R1 is generated by the generating system of R2 and
the element x1.
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Problem

Up till now we discussed Hilbert series of graded homomorphic
images of polynomial algebras and free associative algebras.
What will happen if we consider free algebras in other classes?
One of the most important algebras from this point of view are
relatively free algebras of varieties of associative or nonassociative
algebras. We shall restrict our considerations to varieties of
associative algebras over a �eld K of characteristic 0.
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Polynomial identities and varieties of algebras

The polynomial f (x1, . . . , xd) ∈ K 〈X 〉, X = {x1, x2, . . .}, is a
polynomial identity for the associative algebra R if

f (r1, . . . , rd) = 0 for all r1, . . . , rd ∈ R.

The set I (R) of all polynomial identities of R is a T-ideal of K 〈X 〉,
(i.e., an ideal which is invariant under all endomorphisms of K 〈X 〉).
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The factor algebra

F (var(R)) = F (R) = K 〈X 〉/I (R)

is the relatively free algebra (of countable rank) in the variety of
algebras R = var(R) generated by the algebra R . The d-generated
subalgebra

Fd(var(R)) = Fd(R) = K 〈Xd〉/(K 〈Xd〉 ∩ I (R))

is the relatively free algebra of rank d in R.
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Properties of Fd(R)

I If A is a d-generated algebra in R (i.e., A satis�es all
polynomial identities of R), then A is a homomorphic image of
Fd(R).

I GKdim(Fd(R)) is a nonnegative integer
A. Berele, Homogeneous polynomial identities, Israel J. Math.
42 (1982), 258-272. (GKdim(Fd(R)) <∞)
V.T. Markov, The Gelfand-Kirillov dimension: nilpotency,
representability, non-matrix varieties (Russian), Siberian
School on Varieties of Algebraic Systems, Abstracts, Barnaul,
1988, 43-45. Zbl. 685.00002. (GKdim(Fd(R)) is an integer)
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I The algebra Fd(R) is graded and its Hilbert series is a rational
function.
A.Ya. Belov, Rationality of Hilbert series of relatively free
algebras (Russian), Uspekhi Mat. Nauk 52 (1997), No. 2,
153-154. Translation: Russian Math. Surveys 52 (1997),
394-395.

I The Hilbert series of Fd(R) is of the same kind as the Hilbert
series of commutative graded algebras.
A. Berele, Applications of Belov's theorem to the cocharacter
sequence of p.i. algebras, J. Algebra 298 (2006), 208-214.
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PI-algebras

The class of PI-algebras (algebras with polynomial identities) is
quite large. (It contains all commutative and all �nite dimensional
algebras.) Nevertheless it shares a lot of the properties of
commutative and �nite dimensional algebras. In particular, it has
nice structural and combinatorial theory.

Example: Theorem of Berele

The Gelfand-Kirillov dimension of a �nitely generated PI-algebra R
is �nite.
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Invariant theory for relatively free algebras

The general linear group GLd(K ) acts on the vector space KXd and
this action is extended diagonally on Fd(R):

g(f (x1, . . . , xd)) = f (g(x1), . . . , g(xd)), f ∈ Fd(R), g ∈ GLd(K ).

If G is a subgroup of GLd(K ), then

FG
d (R) = {f ∈ Fd(R) | g(f ) = f for all g ∈ G}

is the subalgebra of G -invariants in Fd(R).
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Di�erences with commutative invariant theory

For �xed R, the condition that FG
d (R) is �nitely generated for

important classes of groups is a very strong restriction on R.

G � any �nite group

The case when FG
d (R), d > 1, is �nitely generated for every �nite

group is described in a series of papers by Kharchenko (1984),
L'vov (1969), Anan'in (1977), Tonov (1981), Drensky (1993), and
Fisher-Susan Montgomery (1986).

G � reductive

The algebra FG
d (R), d > 1, is �nitely generated for every reductive

group G if and only if R satis�es the identity of Lie nilpotency.
M. Domokos, V. Drensky, A Hilbert-Nagata theorem in
noncommutative invariant theory, Trans. Amer. Math. Soc. 350
(1998), 2797-2811.
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Common properties with commutative invariant theory

If G is a subgroup of GLm(K ) such that for all d and all rational
actions of GLm(K ) on KXd , the algebra of invariants K [Xd ]G is
�nitely generated, then for all such actions of GLd(K ) the Hilbert
series H(FG

d (R), z) is a rational function of the kind which appears
in the case of commutative algebra.
M. Domokos, V. Drensky, Rationality of Hilbert series in
noncommutative invariant theory, International J. Algebra and
Computations 27 (2017), No. 7, 831-848.
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Another type of examples

W. Borho, H. Kraft, Über die Gelfand-Kirillov Dimension, Math.
Ann. 220 (1976), 1-24.
V. Drensky, Free Algebras and PI-Algebras, Springer-Verlag,
Singapore, 2000, Section 9.4.
Let J ⊂ N0 and let R be the algebra generated by x , y with basis

{xm, xmyxn, xmyx jyxn | m, n ≥ 0, j ∈ J}

and such that all other monomials are equal to 0.
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The Hilbert series of R is

H(R, z) =
1

1− z
+

2z
(1− z)2

+
z2

(1− z)2
h(z), h(z) =

∑
j∈J

z j .

I For suitable choices of the set J the function h(z) becomes
transcendental, and hence the same holds for the Hilbert series
H(R, z).

I For any real α ∈ [2, 3] there exists a set J such that
GKdim(R) = α.

I The algebra R is PI. It satis�es

[x1, x2][x3, x4][x5, x6] = 0.
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Generalization of the construction

Theorem. Let
f (z) =

∑
n≥0

anz
n ∈ Z[[z ]]

be a formal power series with nonnegative integer coe�cients such
that there exists a positive integer d with the property an ≤ dn.
Then there exists a (d + 1)-generated graded algebra R , such that

H(R, z) =
1

1− dz
+

z

(1− dz)2
+

z2f (z)

(1− z)dp(1− dz)q
,

p, q ≥ 0, p + q ≤ 2.
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Theorem. If in the notation of the previous theorem there exists a

positive integer d , such that an ≤
(
n + d − 1
d − 1

)
, then there exists a

(d + 1)-generated graded algebra R with

H(R, z) =
1

(1− z)d
+

z

(1− z)2d
+

z2f (z)

(1− z)dp
, 0 ≤ p ≤ 2.
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Question (Roberto La Scala)

How to construct graded algebras with Hilbert series which are
algebraic but are not rational functions?

Answer

We can apply the previous two theorems. For this purpose we need
algebraic but not rational power series with nonnegative integer
coe�cients.
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Warning

The condition that a power series with nonnegative integer
coe�cients is algebraic is very restrictive.

Theorem (Fatou, 1906)

If the coe�cients of a power series are nonnegative integers and are
bounded polynomially, then the series is either rational or
transcendental.
P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math.
30 (1906), 335-400.
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Corollary

If R is a �nitely generated graded algebra of �nite Gelfand-Kirillov
dimension, then its Hilbert series is either rational or transcendental.

Theorem of Berele

Finitely generated PI-algebras have a �nite Gelfand-Kirillov
dimension.
A. Berele, Homogeneous polynomial identities, Israel J. Math. 42
(1982), 258-272.

Corollary

If R is �nitely generated graded PI-algebra, then its Hilbert series is
either rational or transcendental function.
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Problem

How to construct algebraic power series which are with nonnegative
integer coe�cients and are not rational functions?

Idea

We start with a sequence of �nite sets of objects An, n = 0, 1, 2, . . .,
for which we know (or can prove), that the generating fucntion

f (z) =
∑
n≥0
|An|zn

of the sequence |An|, n = 0, 1, 2, . . ., is algebraic but not rational.
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Example � Catalan numbers

The n-th Catalan number is equal to the number of planar binary
rooted trees with n leaves.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



Therefore,

c(z) =
∑
n≥1

cnz
n, c2(z) =

∑
n≥2

n−1∑
k=1

ckcn−kz
n = c(z)− z ,

c2(z)− c(z) + z = 0, c(z) =
1−
√
1− 4z
2

,

cn =
1
n

(
2n − 2
n − 1

)
, n = 1, 2, . . . .
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Similar example � k-ary trees, k > 2

These are planar rooted trees such that every vertex (which is not a
leave) is an origin of exactly k branches.
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The generating function f (z) of k-ary trees is the solution of the
equation

f k(z)− f (z) + z = 0,

satisfying the condition f (0) = 0.
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One more example � arbitrary trees

We consider trees such that every vertex (which is not a leave) is
an origin of at least 2 branches. The generating function of such
trees satis�es the equation

f 2(z)

1− f (z)
− f (z) + z = 0,

f (z) =
1 + z −

√
1− 6z + z2

4

and this is the generating function of the super-Catalan numbers.
See the sequence A001003 in The On-Line Encyclopedia of Integer
Sequences � https://oeis.org/.
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Trnaslation in the language of algebra

We may turn the set of planar binary rooted trees in a
nonassociative groupoid (or nonassociative magma):

⇓

((x(xx))x)◦((xx)(xx))=((x(xx))x)((xx)(xx))
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Ω-magmas

For any n ≥ 2 we �x a �nite set of n-ary operations

Ωn = {ωn1, . . . , ωnpn}, Ω =
⋃
n≥2

Ωn.

As in the case of binary trees, we may consider Ω-trees. The
di�erence is that the vertices which are not leaves are labeled by
the elements of Ω,taking into account the n-arity of the operations.
Then we can give the set of Ω-trees the structure of an Ω-magma.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



Vesselin Drensky Algebras, Functions, Trees, and Integrals



Results of Vesselin Drensky and Chavdar Lalov:
project in the frames of the High School Student Institute
of Mathematics and Informatics

Let p(z) = p2z
2 + p3z

3 + · · · be the generating function of the set
Ω. Then the generating function of the Ω-trees (which counts the
trees with a given number of leaves) satis�es the equation

p(f (z))− f (z) + z = 0.

Therefore, if p(z) is algebraic, under minimal restrictions on p(z),
the function f (z) will be also algebraic.
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Theorem of Kurosh (1947, 1969)

Every submagma of a free Ω-magma is also free.
A.G. Kurosh, Non-associative free algebras and free products of
algebras (Russian) Rec. Math. (Mat. Sbornik) N.S. 20(62) (1947),
239-262.
A.G. Kurosh, Multiple operator rings and algebras (Russian), Uspehi
Mat. Nauk (Russian Math. Surveys) 24 (1969), No. 1(145), 3-15.
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Theorem

The set of all Ω-trees is a free Ω-magma, and the set of all Ω-trees
with number of leaves divisible by s is a submagma. If f (s)(z) is
the generating function of this set, then the generating function
g (s)(z) of the free generating set satis�es the equation

p(f (s)(z))− f (s)(z) + g (s)(z) = 0.
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Jointly with Chavdar Lalov, a secondary school student at the
Mathematical School �Geo Milev�, Pleven, we found a method,
starting with an algebraic generating function p(z) of the set of
operations Ω (given explicitly or with its equation) to �nd the
generating function g (s)(z) or its equation. Again, under natural
restrictions on p(z) it has turned out that g (s)(z) is algebraic but
not rational.
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The starting point of the project with Chavdar Lalov

Planar binary trees with even number of leaves.

We consider the set E of all planar binary trees with even number
of leaves. We may identify E with the set of all words of even
length in the free magma M(x) generated by x . There are two
possibilities for the number of leaves in the two branches of the tree
(u)(v) ∈ E :

(even-even)
E0 = {(u)(v) | |u| ≡ |v | ≡ 0 (mod 2)}

(odd-odd)
E1 = {(u)(v) | |u| ≡ |v | ≡ 1 (mod 2)}.
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Problem. We consider the planar binary rooted trees with even
number 2n of leaves. Which are more � the trees of type
(even-even) or of type (odd-odd)?
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Solution

The set E is a submagma of the free magma M(x) and therefore
(by the theorem of Kurosh) is free. Its generating set consists of
the (odd�odd) trees. If e(z) and g(z) are, respectively, the
generating functions of E and of the generators of E , then the
generating function of E is

e(z) =
∑
n≥1

c2nz
2n =

1
2

(c(z) + c(−z)) = c(g(z)).

We consider g(z) as an unknown, solve the equation, and obtain

g(z) =
1
4
c(4z2), g2n =

1
4n−1

cn.
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Applying the Stirling formula for n! after some calculations we
obtain

g2n
c2n
≈ 1

2

√
2n − 1
n − 1

, lim
n→∞

g2n
c2n

=

√
2
2
≈ 0.707105.

Hence the trees of type (odd-odd) are much more than the trees of
type (even-even).
V. Drensky, R. Holtkamp, Planar trees, free nonassociative
algebras, invariants, and elliptic integrals, Algebra and Discrete
Mathematics (2008), No. 2, 1-41.
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Another approach

Roberto La Scala, Dmitri Piontkovski, Sharwan K. Tiwari,
Noncommutative algebras, context-free grammars and algebraic
Hilbert series, Journal of Symbolic Computation (to appear).
The authors produce noncommutative �nitely generated monomial
algebras whose Hilbert series are algebraic functions. The approach
is based on the concept of graded homology and the theory of
unambiguous context-free grammars. Explicit examples are
provided.
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Elliptic integrals

We consider the absolutely free nonassociative algebra K{X2} (in
which uv 6= vu and (uv)w 6= u(vw)). As in the case of the free
associative algebra K 〈X2〉, which we have already considered, let
R1 and R2 be the subalgebras of K{X2} de�ned by

R1 = {f (x1, x2) ∈ K{X2} | f (x1, x1 + x2) = f (x1, x2)},

R2 = {f (x1, x2) ∈ R1 | f (x1 + x2, x2) = f (x1, x2)}.

Remark

As in the case of the free associative algebra, the algebras R1 and
R2 are not �nitely generated.
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Theorem

The Hilbert series of the algebras R1 and R2 are elliptic integrals:

H(R1, z) =

∫
1

0

cos2(πu)
(
1−

√
1− 8z cos(2πu)

)
du,

H(R2, z) =

∫
1

0

sin2(2πu)
(
1−

√
1− 8z sin(2πu)

)
du

The proofs use noncommutative analogue of the Molien-Weyl
integral formula for the Hilbert series in classical invariant theory.
V. Drensky, R. Holtkamp, Planar trees, free nonassociative
algebras, invariants, and elliptic integrals, Algebra and Discrete
Mathematics (2008), No. 2, 1-41.
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Gradings of free associative algebras

(Byproduct of a project on algebras with polynomial identity born
in discussions with Olga Finogenova and Mikhail Zaicev)
Let

g(X , z) =
∑
m≥1

dmz
m, dm ∈ N0,

be a power series with nonnegative integer coe�cients. We assume
that the free associative algebra K 〈X 〉 is generated by the set

X =
⋃
m≥1
{xm1, . . . , xmdm}

and deg(xmi ) = m.
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Theorem

The Hilbert series of K 〈X 〉 is

H(K 〈X 〉, z) =
∑
n≥0

bnz
n =

1
1− g(X , z)

.

Problems
I Express explicitly the coe�cients bn in terms of dn.

I Find the asymptotics of the coe�cients bn.

I Does lim
n→∞

n
√

bn exist? Is it rational/algebraic/transcendental?
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Theorem

Let the series

g(X , z) =
∑
m≥1

dmz
m, dm ∈ N0,

have a nonzero radius of convergence and let the integers dm are
coprime. Then for the coe�cients bn of the Hilbert series of K 〈X 〉
we have that

lim
n→∞

n
√
bn

exists and is equal to 1/α, where α is the positive solution of the
equation

g(X , z) =
∑
m≥1

dmz
m = 1.

Vesselin Drensky Algebras, Functions, Trees, and Integrals



Transcendental numbers and lacunary series

(lacuna (Latin) = gap)
Liouville number is a real number α with the property that, for
every positive integer n, there exist in�nitely many pairs of integers
(p, q) with q > 1 such that

0 <

∣∣∣∣α− p

q

∣∣∣∣ < 1
qn
.

Liouville showed that such numbers are transcendental, thus
establishing the existence of transcendental numbers for the �rst
time.
J. Liouville, Sur des classes très étendues de quantités dont valeur
n'est ni algébrique, ni même réducible à des irrationelles
algébriques, C.R. Acad. Sci., Paris, Sér. A 18 (1844), 883-885. J.
Math. Pures Appl. 16 (1851), 133-142.
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Example

The Liouville constant α =
∑
k≥1

1
10k!

is transcendental.
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Generalizations

Theorem. (A partial case of a result of Cohn) Let

f (z) =
∑
i≥0

diz
ki , 0 6= di ∈ N0, 0 ≤ k0 < k1 < · · · ,

lim
i→∞

ki+1

ki
= lim

i→∞

ki+1

log(max{d0, . . . , di})
=∞.

Then f (α) is transcendental for every nonzero algebraic α within
the circle of convergence of f (t).
H. Cohn, Note on almost-algebraic numbers, Bull. Am. Math. Soc.
52 (1946), 1042-1045.
For more recent results see, e.g., the references in
H. Kaneko, Algebraic independence of the values of power series
with unbounded coe�cients, Ark. Mat. 55 (2017), No. 1, 61-87.
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Corollary

If the series
g(X , z) =

∑
m≥1

dmz
m

with dm coprime satis�es the conditions of the theorem of Cohn,
then the limit lim

n→∞
n
√
bn for the coe�cients bn of the Hilbert series

of K 〈X 〉 is a transcendental number.

Problem

(The most important case in the original project on algebras with
polynomial identity)
Is the limit lim

n→∞
n
√

bn transcendental for the series

g(X , z) =
∑
m≥1

zm
2

?
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